Apply는 dataframe의 각 행이나 열에 User-defined function을 실행할 때 사용하는 흔한 옵션입니다. axis=1로 실행하게 되면 각 row에 대해서 연산을 수행하게 됩니다. 하지만, 데이터 사이즈가 큰 경우 메모리 접근 방식과 및 벡터화 되지 않은 연산으로 성능 문제가 발생하기 쉽습니다. 이 글에서는 성능 이슈가 발생하는 원인과 해결책을 간단하게 정리해봤습니다. apply 함수의 성능 이슈 원인 1. 메모리 접근 패턴 pandas DataFrame은 열(column)-기반의 데이터 저장 구조를 사용합니다. 따라서 열 단위로 데이터에 접근하는 것이 메모리에서 연속적이므로 빠릅니다. 그러나 apply를 사용하여 행(row) 단위로 함수를 적용할 때, 각 행의 데이터는 여러 열에서 ..